Network Centric Systems

The Future of Terminal Airspace: An Airportal for 2025

ICNS Conference May 2006

Mary Ellen Miller
AMHS / Raytheon NCS
Marlborough, MA

Agenda

- Virtual Airspace Modeling and Simulation (VAMS) Overview
- Terminal Domain Concepts and Core Ideas
- Blended Terminal Domain Concept

Network Centric Systems

VAMS Future Concepts

NASA VAMS Multi-Year Research and Technology Development Project

- Develop Capacity Increasing Concepts targeted for 2020/2025
- Enable throughput increases of 100% based on 1997 levels
- Raytheon supporting VAMS under a Space Act Agreement

VAMS Domains and Concepts Network Centric Systems

SLIC CONCEPT		Surface (ATCT)	Terminal (TRACON)	En Route (ARTCC)	National (ATCSCC/AOC)
1	swo				
2	SOAR				
3	PTP				
4	AAC				
5	Metron Surface				
6	TACEC				
7	Metron Weather				
8	WVAS				
9	University Concepts				

- System Wide Optimization (SWO)
- Surface Operation Automation Research (SOAR)
- Point-to-Point and On Demand Air Transportation System (PTP)
- Advanced Airspace Concept (AAC)
- Metron Surface
- Terminal Airspace Capacity Enhancing Concept (TACEC)
- Metron Weather
- •Wake Vortex Avoidance System Concept (WVAS)
- University Concept (Optional Tube Concept)

Terminal Domain Core Ideas

- Terminal Airspace
 - "Metroplex" Includes both Major/Hub and Regional Airports
- Automation Integrates Planning & Control of Air and Surface Domains
 - Dynamically allocates meter fix (anchor points) to optimize weather/demand
 - Services aircraft based on level of equipage
- Very Closely Spaced Parallel Runway (VCSPR) Operation
 - Enables airports with existing VCSPR to operate in both IMC and VMC
 - Allows construction of additional runways within existing airport footprint
- Automation-Enhanced Regional Airports
 - Enables increased Point-to-Point operation
 - Reduces congestion at Hub airports
- Reduced In-Trail Wake Vortex Spacing

VAMS Airspace

Network Centric Systems

Airspace Class Equipage Levels

- Class A: Fully AAC equipped (including CPDLC, 4DFMS, ADS-X Mode S transponder)
- Class B: Fully AAC equipped (including CPDLC, 4DFMS, ADS-X Mode S transponder)
- Class C/D/E/H/I: Allow set number of non-AAC equipage within given airspace volume (sector)
- Class G: "see and avoid"
- Class U: Fully Class U equipped (CPDLC, 4DFMS, ADS-X Mode S transponder, TIS-X receiver, FIS-X receiver, MFD/CDTI, PFD Wake Visualization, Sensor Enhanced-Synthetic Vision System)

Integrated Planning & Control Components

PTP Automation

- Basic Airport Automation System (BAASY) Class U Airspace
- Smart Airport Automation System (SAASY) Class I Airspace
- Virtual Tower Airport Automation System (VTAAS) Class H Airspace

Integrated Metroplex P&C Functions

Network Centric Systems

Metroplex
Planning and
Control
addresses the
demand and
capacity of large
hub and spoke
as well as small
airports within
the Metroxplex.

Equipage-based Service

Aircraft are assigned arrival/departure rates based on their level of equipage

Very Closely Spaced Runway Operations

Enhanced CNS and Automation Enable SuperDensity and VMC in IMC

Wake-Free 4D Trajectories Deliver Paired Aircraft to VCSPR Final Approach

RaytheonNetwork Centric Systems

Point-to-Point Operations

Many Public-Use Airports Available within 30 nm of OEP Airports

Automation-Enhanced Regional Airports

- Separation assurance from remote virtual tower controller staff using:
 - Electronic surveillance and VHF radio or Datalink
- Access for all aircraft with Mode C transponder and VHF radio

- Automated separation assurance from groundbased automation system using:
 - Voice Synthesis and Datalink
- Access for all aircraft with Mode C transponder and VHF radio

- Aircraft self-separation and self-merging using:
 - ADS-B, CDTI, Synthetic Vision with Vortex Prediction
- Ground-based automated sequencing
- Access restricted to highly-equipped aircraft

Reduced In-Trail Wake Vortex Spacing

Ground-based wake vortex sensors, advanced data fusion/weather prediction, and improved aircraft position and intent data enable reduced longitudinal wake vortex spacing

Network Centric Systems

VAMS Blended Terminal Domain

Network Centric Systems

Questions?